Add like
Add dislike
Add to saved papers

Single-Arm Resistance Training Study to Determine the Relationship between Training Outcomes and Muscle Growth Factor mRNAs in Older Adults Consuming Numerous Medications and Supplements.

OBJECTIVES: Determine if the muscle mRNA levels of three growth factors (insulin-like growth factor-1 [IGF1], ciliary neurotropic factor [CNTF], and vascular endothelial growth factor-D [VEGFD]) are correlated with muscle size and strength gains from resistance exercise while piloting a training program in older adults taking medications and supplements for age-associated problems.

DESIGN: Single-arm prospective study.

SETTING: US Veterans Affairs hospital.

PARTICIPANTS: Older (70±6 yrs) male Veterans (N=14) of US military service.

INTERVENTION: Thirty-five sessions of high-intensity (80% one-rep max) resistance training including leg press, knee curl, and knee extension to target the thigh muscles.

MEASUREMENTS: Vastus lateralis biopsies were collected and body composition (DEXA) was determined pre- and post-training. Simple Pearson correlations were used to compare training outcomes to growth factor mRNA levels and other independent variables such as medication and supplement use.

RESULTS: Average strength increase for the group was ≥ 25% for each exercise. Subjects averaged taking numerous medications (N=5±3) and supplements (N=2±2). Of the growth factors, a significant correlation (R>0.7, P≤0.003) was only found between pre-training VEGFD and gains in lean thigh mass and extension strength. Mass and strength gains were also correlated with use of α-1 antagonists (R=0.55, P=0.04) and pre-training lean mass (R=0.56, P=0.04), respectively.

CONCLUSIONS: Muscle VEGFD, muscle mass, and use of α-1 antagonists may be predisposing factors that influence the response to training in this population of older adults but additional investigation is required to determine if these relationships are due to muscle angiogenesis and blood supply.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app