Add like
Add dislike
Add to saved papers

Cerebral blood flow measured by positron emission tomography during normothermic cardiopulmonary bypass: an experimental porcine study.

Perfusion 2018 July
BACKGROUND: Mean arterial blood pressure (MAP) and/or pump flow during normothermic cardiopulmonary bypass (CPB) are the most important factors of cerebral perfusion. The aim of this study was to explore the influence of CPB blood flow on cerebral blood flow (CBF) measured by dynamic positron emission tomography (PET) using 15 O-labelled water with no pharmacological interventions to maintain the MAP.

METHODS: Eight pigs (69-71 kg) were connected to normothermic CPB. After 60 minutes (min) with a CPB pump flow of 60 mL/kg/min, the pigs were changed to either 35 mL/kg/min or 47.5 mL/kg/min for 60 min and, thereafter, all the pigs returned to 60 mL/kg/min for another 60 min. The MAP was measured continuously and the CBF was measured by positron emission tomography (PET) during spontaneous circulation and at each CPB pump flow after 30 min of steady state.

RESULTS: Two pigs were excluded due to complications. CBF increased from spontaneous circulation to a CPB pump flow of 60 mL/kg/min. A reduction in CPB pump flow to 47.5 mL/kg/min (n=3) resulted in only minor changes in CBF while a reduction to 35 mL/kg/min (n=3) caused a pronounced change (correlation coefficient (R2 ) 0.56). A return of CPB pump flow to 60 mL/kg/min was followed by an increase in CBF, except in the one pig with the lowest CBF during low flow (R2 =0.44). CBF and MAP were not correlated (R2 =0.20).

CONCLUSION: In this experimental porcine study, a relationship was observed between pump flow and CBF under normothermic low-flow CPB. The effect of low pump flow on MAP showed substantial variations, with no correlation between CBF and MAP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app