Add like
Add dislike
Add to saved papers

miR-99a-5p acts as tumor suppressor via targeting to mTOR and enhances RAD001-induced apoptosis in human urinary bladder urothelial carcinoma cells.

Introduction: miR-99a-5p, known to play an important role in mammalian target of rapamycin (mTOR) regulation, is downregulated in human bladder cancer. The study aimed to investigate the anticancer activity of miR-99a-5p and the possible mechanism associated with mTOR in bladder cancer cells.

Materials and methods: Vectors expressing miR-99a-5p were transfected into human urinary bladder urothelial carcinoma (5637 and T24) cells. The level of miR-99a-5p was monitored by microRNA (miRNA) quantitative polymerase chain reaction (QPCR). Luciferase reporter assays were performed to verify the direct binding of miR-99a-5p to mTOR transcripts. The mTOR transcripts and protein levels were measured by QPCR and Western blot, respectively. Cell viability of miR-99a-5p-transfected cells was detected by tetrazolium salt (WST-1). Inhibition of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) signaling was detected by the phosphorylation of mTOR and AKT using Western blot. The ability of miR-99a-5p to enhance RAD001-induced apoptosis was determined as the expression of cleaved caspase 3 and levels of DNA fragmentation.

Results: Transfection of miR-99a-5p-expressing vector elevated the expression level of miR-99a-5p up to sixfold compared to vector-only controls. The results from luciferase assay verified that miR-99a-5p directly binds to the predicted sequence in the 3' untranslated region (3'-UTR) of mTOR. The levels of mTOR RNA and protein were decreased in miR-99a-5p-transfected cells. Dual inhibition of mTORC1 and mTORC2 by miR-99a-5p was confirmed by the decreased phosphorylation of mTOR (at Ser2448 and Ser2481), phospho-rpS6 and phospho-4EBP1. The phosphorylation of AKT was significantly inhibited in miR-99a-5p-transfected cells upon RAD001 treatment. Enforced expression of miR-99a-5p potentiated RAD001-induced apoptosis in these cells.

Conclusion: This is the first study showing that miR-99a-5p markedly inhibits the growth of bladder cancer cells via dual inhibition of mTORC1 and mTORC2. Our data demonstrated that forced expression of miR-99a-5p inhibits the feedback of AKT survival pathway and enhances the induction of apoptosis in RAD001-treated bladder cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app