Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CBFA2T2 is required for BMP-2-induced osteogenic differentiation of mesenchymal stem cells.

Bone morphogenetic protein (BMP) signaling is one of the essential pathways involved in osteogenic differentiation of mesenchymal stem cells (MSCs) and regulation of bone formation. While BMP-2 has been approved for clinic use, the underlying mechanisms remain not fully understood. In this study, we found co-repressor CBFA2T2 (core-binding factor, runt domain, alpha subunit 2, translocated to, 2) expression was significantly upregulated in response to BMP-2 treatment during osteogenic differentiation of human dental pulp stem cells (hDPSCs) and mouse bone marrow stromal cells (mBMSCs). siRNA-mediated knockdown of CBFA2T2 blunted the BMP-2-induced allkaline phosphatase (ALP) activity, mineralization of extracelluar matrix (ECM), and expression of osteogenic related genes in both hDPSCs and mBMSCs. Mechanistically, knockdown of CBFA2T2 promoted expression of euchromatic histone methyltransferase 1 (EHMT1) in mBMSCs, which further led to upregulation of H3K9me2 levels at promoter of runt related transcription factor 2 (Runx2), the master regulator of osteogenesis. Collectively, our findings indicate that CBFA2T2 is required for BMP-2-induced osteogenic differentiation of MSCs through inhibition of EHMT1-mediated histone methylation at Runx2 promoter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app