Add like
Add dislike
Add to saved papers

MONTE CARLO SIMULATIONS OF SPATIAL LET DISTRIBUTIONS IN CLINICAL PROTON BEAMS.

The linear energy transfer (LET) is commonly used as a parameter which describes the quality of the radiation applied in radiation therapy with fast ions. In particular in proton therapy, most models which predict the radiobiological properties of the applied beam, are fitted to the dose-averaged LET, LETd. The related parameter called the fluence- or track-averaged LET, LETt, is less frequently used. Both LETt and in particular LETd depends profoundly on the encountered secondary particle spectrum. For proton beams including all secondary particles, LETd may reach more than 3 keV/um in the entry channel of the proton field. However, typically the charged particle spectrum is only averaged over the primary and secondary protons, which is in the order of 0.5 keV/um for the same region. This is equal to assuming that the secondary particle spectrum from heavier ions is irrelevant for the resulting radiobiology, which is an assertion in the need of closer investigation. Models which rely on LETd should also be clear on what type of LETd is used, which is not always the case. Within this work, we have extended the Monte Carlo particle transport code SHIELD-HIT12A to provide dose- and track-average LET-maps for ion radiation therapy treatment plans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app