Add like
Add dislike
Add to saved papers

Modeling adsorption kinetic of crystal violet removal by electrocoagulation technique using bipolar iron electrodes.

This paper studies the removal of crystal violet (CV) dye by electrocoagulation (EC) process using bipolar iron electrodes. Numerous operating parameters such as initial CV solution concentration, speed of agitation, number of electrodes, type and quantity of supporting electrolyte, temperature- and initial pH were investigated. A complete removal of 10 mg/L CV was achieved within 10 min at pH 7, 0.5 g NaCl, 1 LCV, 750 rpm, 9 sheets, 17.36 mAcm2 , and 25 °C. The performed energy-dispersive X-ray spectroscopy (EDAX), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the adsorption of CV onto the insoluble iron hydroxide flocs. Amongst the studied adsorption isotherms models, Langmuir and Dubinin-Radushkevich were the most applicable. The kinetic of adsorption of CV onto flocs during the EC operation was studied using the pseudo-first-order, pseudo-second-order, and intraparticulate diffusion models, with results affirming that the adsorption process proceeded according to the pseudo-second-order model. The study of thermodynamic parameters (ΔG0 , ΔH0 , and ΔS0 ,) of the CV removal at different temperatures reflected the feasibility of the spontaneous randomness of endothermic adsorption, especially at lower temperatures. The multiple regression equation of the removal of CV by EC technique under the different studied conditions was predicted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app