Add like
Add dislike
Add to saved papers

Identification of a Novel Hybridization from Isosorbide 5-Mononitrate and Bardoxolone Methyl with Dual Activities of Pulmonary Vasodilation and Vascular Remodeling Inhibition on Pulmonary Arterial Hypertension Rats.

Given the clinical therapeutic efficacy of oral-dosed bardoxolone methyl (1) and the selective vasodilatory effect caused by inhalation of nitric oxide (NO) on pulmonary arterial hypertension (PAH) patients, a new hybrid (CDDO-NO, 2) from 1 and NO donor isosorbide 5-mononitrate (3) was designed and synthesized. This hybrid could liberate 1 and NO in the lungs of rats after trachea injection. Significantly, 2 lowered mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), decreased right ventricular hypertrophy (RVH), and attenuated pulmonary artery medial thickness (PAMT) and vascular muscularization in monocrotaline (MCT)-induced PAH rats. Meanwhile, 2 inhibited overproliferation of perivascular cells and diminished macrophage infiltration and oxidative stress by inactivation of NOX4. In addition, 2 markedly reduced cardiac hypertrophy and fibrosis in the PAH rats. Overall, 2 exhibited potent dual activities of pulmonary vasodilation and vascular remodeling inhibition, suggesting that it may be a promising agent for PAH intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app