Add like
Add dislike
Add to saved papers

Generation of full-thickness skin equivalents using hair follicle-derived primary human keratinocytes and fibroblasts.

Skin equivalents are increasingly used as human-based test systems for basic and preclinical research. Most of the established skin equivalents are composed of primary keratinocytes and fibroblasts, isolated either from excised human skin or juvenile foreskin following circumcisions. Although the potential of hair follicle-derived cells for the generation of skin equivalents has been shown, this approach normally requires microdissections from the scalp for which there is limited subject compliance or ethical approval. In the present study, we report a novel method to isolate and cultivate keratinocytes and fibroblasts from plucked hair follicles that were then used to generate skin equivalents. The procedure is non-invasive, inflicts little-pain, and may allow easy access to patient-derived cells without taking punch biopsies. Overall, minor differences in morphology, ultrastructure, expression of important structural proteins, or barrier function were observed between skin equivalents generated from hair follicle-derived or interfollicular keratinocytes and fibroblasts. Interestingly, improved basal lamina formation was seen in the hair follicle-derived skin equivalents. The presented method here allows easy and non-invasive access to keratinocytes and fibroblasts from plucked hair follicles that may be useful particularly for the generation of skin disease equivalents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app