Add like
Add dislike
Add to saved papers

Transformation of the gas-phase favored O-protomer of p-aminobenzoic acid to its unfavored N-protomer by ion activation in the presence of water vapor: An ion-mobility mass spectrometry study.

An ion-mobility mass spectrometry study showed that the preferred O-protonated form of p-aminobenzoic in the gas phase can be converted to the thermodynamically less favored N-protomer by in-source collision-induced ion activation during the ion transfer process from the atmospheric region to the first vacuum region if the humidity is high in the ion source. Upon the addition of water vapor to the nitrogen gas used to promote the solid analyte to the gas phase under helium-plasma ionization conditions, the intensity of the ion-mobility arrival-time peak for the N-protomer increased dramatically. Evidently, the ion-activation process in the first vacuum region is able to provide the energy required to surmount the barrier to isomerize the O-protomer to the more energetic N-protomer. The transfer of the proton attached to the carbonyl oxygen atom of the O-protomer to the amino group takes place by a water-bridge mechanism. Apparently, the postionization transformations that take place during the transmission of ions from the atmospheric-pressure ion source to the detector, via different physical compartments of low to high vacuum, play an eminent role in determining the population ratios eventually manifested at the detector.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app