Add like
Add dislike
Add to saved papers

Exploring sand fly salivary proteins to design multiepitope subunit vaccine to fight against visceral leishmaniasis.

Visceral leishmaniasis (VL) is caused by the parasites of Leishmania donovani complex, leads to the death of 20 000 to 40 000 people from 56 affected countries, worldwide. Till date, there is not a single available vaccine candidate to prevent the VL infection, and treatment only relies upon expensive and toxic chemotherapeutic options. Consequently, immunoinformatics approach was applied to design a multiepitope-based subunit vaccine to enhance the humoral as well as cell-mediated immunity. Constructed vaccine candidate was further subjected to evaluation on allergenicity and antigenicity and physiochemical parameters. Later on, disulfide engineering was performed to increase the stability of vaccine construct. Also, molecular docking and molecular dynamics simulation study were performed to check the binding affinity and stability of toll-like receptor-4 to vaccine construct complex. Finally, codon optimization and in silico cloning were performed to ensure the expression of proposed vaccine construct in a microbial expression system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app