Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Regulation of RhoA GTPase and various transcription factors in the RhoA pathway.

RhoA GTPase plays a variety of functions in regulation of cytoskeletal proteins, cellular morphology, and migration along with various proliferation and transcriptional activity in cells. RhoA activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and the guanine nucleotide dissociation factor (GDI). The RhoA-RhoGDI complex exists in the cytosol and the active GTP-bound form of RhoA is located to the membrane. GDI displacement factors (GDFs) including IκB kinase γ (IKKγ) dissociate the RhoA-GDI complex, allowing activation of RhoA through GEFs. In addition, modifications of Tyr42 phosphorylation and Cys16/20 oxidation in RhoA and Tyr156 phosphorylation and oxidation of RhoGDI promote the dissociation of the RhoA-RhoGDI complex. The expression of RhoA is regulated through transcriptional factors such as c-Myc, HIF-1α/2α, Stat 6, and NF-κB along with several reported microRNAs. As the role of RhoA in regulating actin-filament formation and myosin-actin interaction has been well described, in this review we focus on the transcriptional activity of RhoA and also the regulation of RhoA message itself. Of interest, in the cytosol, activated RhoA induces transcriptional changes through filamentous actin (F-actin)-dependent ("actin switch") or-independent means. RhoA regulates the activity of several transcription regulators such as serum response factor (SRF)/MAL, AP-1, NF-κB, YAP/TAZ, β-catenin, and hypoxia inducible factor (HIF)-1α. Interestingly, RhoA also itself is localized to the nucleus by an as-yet-undiscovered mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app