Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Endogenous Murine Amyloid-β Peptide Assembles into Aggregates in the Aged C57BL/6J Mouse Suggesting These Animals as a Model to Study Pathogenesis of Amyloid-β Plaque Formation.

Amyloid-β peptide (Aβ), paired helical filament-tau (PHF-tau), and α-synuclein are in the focus of neuroscience research because they aggregate in brains of patients with Alzheimer's and Parkinson's diseases. For this purpose, transgenic mouse models were used containing the human genes for AβPP/presenilin/tau or α-synuclein with the most frequent mutations. This is not ideal because most patients develop sporadic forms of the diseases with no causative single gene defect and furthermore the aggregation of human proteins in man is not necessarily the same in rodents. We hypothesized that for such cases the aged mouse could be an alternative model and analyzed the distribution of endogenous Aβ, PHF-tau, and α-synuclein in mouse brains at different ages. Whereas Aβ was below detectable levels at birth, it was present at high levels in the 15-month-old mouse. Aβ was found in the cytosol and lysosomes of neurons of the temporal cortex, cingulate area, pons, and cerebellum as well as extracellularly in the periventricular zone. Contrary to Aβ, mouse brain was devoid of PHF-tau-positive neurofibrillary tangles. α-Synuclein was detectable in the newborn mouse with highest levels in the marginal zone of the lateral cortex and average levels in the hippocampus, pons, and cerebellum. Brain-area specific differences in the α-synuclein level persisted up to 15 months of age, but increased 3-fold in all areas over time. α-Synuclein resided in the neuropil, but not in intracellular aggregates even in the aged mouse. We suggest the aged mouse as a model to study Aβ plaque formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app