Add like
Add dislike
Add to saved papers

Sign Switch of Gaussian Bending Modulus for Microemulsions: A Self-Consistent Field Analysis Exploring Scale Invariant Curvature Energies.

Physical Review Letters 2018 January 13
Bending rigidities of tensionless balanced liquid-liquid interfaces as occurring in microemulsions are predicted using self-consistent field theory for molecularly inhomogeneous systems. Considering geometries with scale invariant curvature energies gives unambiguous bending rigidities for systems with fixed chemical potentials: the minimal surface Im3m cubic phase is used to find the Gaussian bending rigidity κ[over ¯], and a torus with Willmore energy W=2π^{2} allows for direct evaluation of the mean bending modulus κ. Consistent with this, the spherical droplet gives access to 2κ+κ[over ¯]. We observe that κ[over ¯] tends to be negative for strong segregation and positive for weak segregation, a finding which is instrumental for understanding phase transitions from a lamellar to a spongelike microemulsion. Invariably, κ remains positive and increases with increasing strength of segregation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app