Add like
Add dislike
Add to saved papers

Osmotic pressure between arbitrarily charged planar surfaces: A revisited approach.

The properties of ionic solutions between charged surfaces are often studied within the Poisson-Boltzmann framework, by finding the electrostatic potential profile. For example, the osmotic pressure between two charged planar surfaces can be evaluated by solving coupled equations for the electrostatic potential and osmotic pressure. Such a solution relies on symmetry arguments and is restricted to either equally or oppositely charged surfaces. Here, we provide a different and more efficient scheme to derive the osmotic pressure straightforwardly, without the need to find the electrostatic potential profile. We derive analytical expressions for the osmotic pressure in terms of the inter-surface separation, salt concentration, and arbitrary boundary conditions. Such results should be useful in force measurement setups, where the force is measured between two differently prepared surfaces, or between two surfaces held at a fixed potential difference. The proposed method can be systematically used for generalized Poisson-Boltzmann theories in planar geometries, as is demonstrated for the sterically modified Poisson-Boltzmann theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app