Add like
Add dislike
Add to saved papers

Diagnosis of breast cancer based on microcalcifications using grating-based phase contrast CT.

European Radiology 2018 September
OBJECTIVES: Microcalcifications are an important feature in the diagnosis of breast cancer, especially in the early stages. In this paper, a CT-based method is proposed to potentially distinguish benign and malignant breast diseases based on the distributions of microcalcifications using grating-based phase-contrast imaging on a conventional X-ray tube.

METHODS: The method presented based on the ratio of dark-field signals to attenuation signals in CT images is compared with the existing method based on the ratio in projections, and the threshold for the classification of microcalcifications in the two types of breast diseases is obtained using our approach. The experiment was operated on paraffin-fixed specimens that originated from 20 female patients ranging from 27-65 years old.

RESULTS: Compared with the method based on projection images (AUC = 0.87), the proposed method is more effective (AUC = 0.95) to distinguish the two types of diseases. The discrimination threshold of microcalcifications for the classification of diseases in CT images is found to be 3.78 based on the Youden index.

CONCLUSIONS: The proposed method can be further developed to improve the early diagnosis and diagnostic accuracy and reduce the clinical misdiagnosis rate of breast cancer.

KEY POINTS: • Microcalcifications are of special importance to indicate early breast cancer. • Grating-based phase-contrast imaging can improve the diagnosis of breast cancers. • The method described here can better classify benign and malignant breast diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app