Add like
Add dislike
Add to saved papers

Screening a small molecule library to identify inhibitors of NF-κB inducing kinase and pro-labor genes in human placenta.

Scientific Reports 2018 January 27
The non-canonical NF-κB signaling (RelB/p52) pathway drives pro-labor genes in the human placenta, including corticotropin-releasing hormone (CRH) and cyclooxygenase-2 (COX-2), making this a potential therapeutic target to delay onset of labor. Here we sought to identify small molecule compounds from a pre-existing chemical library of orally active drugs that can inhibit this NF-κB signaling, and in turn, human placental CRH and COX-2 production. We used a cell-based assay coupled with a dual-luciferase reporter system to perform an in vitro screening of a small molecule library of 1,120 compounds for inhibition of the non-canonical NF-κB pathway. Cell toxicity studies and drug efflux transport MRP1 assays were used to further characterize the lead compounds. We have found that 14 drugs have selective inhibitory activity against lymphotoxin beta complex-induced activation of RelB/p52 in HEK293T cells, several of which also inhibited expression of CRH and COX-2 in human term trophoblast. We identified sulfapyridine and propranolol with activity against CRH and COX-2 that deserve further study. These drugs could serve as the basis for development of orally active drugs to affect length of gestation, first in an animal model, and then in clinical trials to prevent preterm birth during human pregnancy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app