Add like
Add dislike
Add to saved papers

Mechanistic peculiarities of activation-induced mobilization of cytotoxic effector proteins in human T cells.

It is widely accepted that cytotoxic T and NK cells store effector proteins including granzymes, perforin and Fas ligand (FasL) in intracellular granules, often referred to as secretory lysosomes. Upon target cell encounter, these organelles are transported to the cytotoxic immunological synapse, where they fuse with the plasma membrane to release the soluble effector molecules and to expose transmembrane proteins including FasL on the cell surface. We previously described two distinct species of secretory vesicles in T and NK cells that differ in size, morphology and protein loading, most strikingly regarding FasL and granzyme B. We now show that the signal requirements for the mobilization of one or the other granule also differ substantially. We report that prestored FasL can be mobilized independent of extracellular Ca2+, whereas the surface exposure of lysosome-associated membrane proteins (Lamps; CD107a and CD63) and the release of granzyme B are calcium-dependent. The use of selective inhibitors of actin dynamics unequivocally points to different transport mechanisms for individual vesicles. While inhibitors of actin polymerization/dynamics inhibit the surface appearance of prestored FasL, they increase the activation-induced mobilization of CD107a, CD63 and granzyme B. In contrast, inhibition of the actin-based motor protein myosin 2a facilitates FasL-, but impairs CD107a-, CD63- and granzyme B mobilization. From our data, we conclude that distinct cytotoxic effector granules are differentially regulated with respect to signaling requirements and transport mechanisms. We suggest that a T cell might 'sense' which effector proteins it needs to mobilize in a given context, thereby increasing efficacy while minimizing collateral damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app