JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Novel Type of Multiterminal Motor Endplate in Human Extraocular Muscles.

Purpose: To investigate the relation between type of motor endplate, acetylcholine receptor (AChR) subunit composition, and fiber types in human extraocular muscles (EOMs).

Methods: EOM samples collected from subjects aged 34 to 82 years were serially sectioned and processed for immunohistochemistry, with specific antibodies against different myosin heavy chain (MyHC) isoforms, neurofilament, synaptophysin, and adult epsilon (ε) and fetal gamma (γ) AChR subunits as well as α-bungarotoxin.

Results: A novel type of motor endplate consisting of large, multiterminal en plaque endings was found in human EOMs, in addition to the previously well-described single en plaque and multiple en grappe endplates. Such novel endplates were abundant but exclusively observed in myofibers lacking MyHC slow and fast IIa but containing MyHC extraocular (MyHCeom), isoforms. Multiple en grappe endings were found only in myofibers containing MyHC slow-tonic isoform and contained fetal γ AChR subunit. Adult ε and fetal γ AChR subunits, alone or combined, were found in the multiterminal endplates. Distinct AChR subunits were present in adjacent motor endplates of a given myofiber containing MyHCeom.

Conclusions: Human EOMs have a more complex innervation pattern than previously described, comprising also a novel type of multiterminal motor endplate present in myofibers containing MyHCeom. The heterogeneity in AChR subunit composition in a given myofiber suggests the possible presence of polyneuronal innervation in human EOMs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app