Add like
Add dislike
Add to saved papers

Consequences of realistic embedding for the L 2,3 edge XAS of α-Fe 2 O 3 .

Cluster models of condensed systems are often used to simulate the core-level spectra obtained with X-ray Photoelectron Spectroscopy, XPS, or with X-ray Absorption Spectroscopy, XAS, especially for near edge features. The main objective of this paper is to examine the dependence of the predicted L2,3 edge XAS of α-Fe2 O3 , an example of a high spin ionic crystal, on increasingly realistic models of the condensed system. It is shown that an FeO6 cluster model possessing the appropriate local site symmetry describes most features of the XAS and is a major improvement over the isolated Fe3+ cation. In contrast, replacing next nearest neighbor positive point charges with Sc3+ , a closed shell cation of similar spatial extent to Fe3+ , only marginally improves the match to experiment. This work suggests that second nearest neighbor effects are negligible. Rather, major improvements to the predicted L2,3 edge XAS likely requires additional many body effects that go beyond the present study in which the multiplets are restricted to arise from angular momentum coupling within a single open shell configuration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app