Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fluorescence in sub-10 nm channels with an optical enhancement layer.

Lab on a Chip 2018 Februrary 14
Fluorescence microscopy uniquely enables physical and biological research in micro- and nanofluidic systems. However, in channels with depths below 10 nm, the limited number of fluorophores results in fluorescence intensity below the detection limit of optical microscopes. To overcome this barrier, we applied Fabry-Pérot interference to enhance fluorescence intensity with a silicon nitride layer below the sub-10 nm channel. A silicon nitride layer of suitable thickness can selectively enhance both absorption and emission wavelengths, leading to a fluorescent signal that is enhanced 20-fold and readily imaged with traditional microscopes. To demonstrate this method, we studied the mass transport of a binary solution of ethanol and Rhodamin B in 8 nm nanochannels. The large molecular size of Rhodamin B (∼1.8 nm) relative to the channel depth results in both separation and reduced diffusivity, deviating from behavior at larger scales. This method extends the widely available suite of fluorescence analysis tools and infrastructure to unprecedented sub-10 nm scale with relevance to a wide variety of biomolecular interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app