CLINICAL TRIAL
COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Staging Hemodynamic Failure With Blood Oxygen-Level-Dependent Functional Magnetic Resonance Imaging Cerebrovascular Reactivity: A Comparison Versus Gold Standard ( 15 O-)H 2 O-Positron Emission Tomography.

BACKGROUND AND PURPOSE: Increased stroke risk correlates with hemodynamic failure, which can be assessed with (15 O-)H2 O positron emission tomography (PET) cerebral blood flow (CBF) measurements. This gold standard technique, however, is not established for routine clinical imaging. Standardized blood oxygen-level-dependent (BOLD) functional magnetic resonance imaging+CO2 is a noninvasive and potentially widely applicable tool to assess whole-brain quantitative cerebrovascular reactivity (CVR). We examined the agreement between the 2 imaging modalities and hypothesized that quantitative CVR can be a surrogate imaging marker to assess hemodynamic failure.

METHODS: Nineteen data sets of subjects with chronic cerebrovascular steno-occlusive disease (age, 60±11 years; 4 women) and unilaterally impaired perfusion reserve on Diamox-challenged (15 O-)H2 O PET were studied and compared with a standardized BOLD functional magnetic resonance imaging+CO2 examination within 6 weeks (8±19 days). Agreement between quantitative CBF- and CVR-based perfusion reserve was assessed. Hemodynamic failure was staged according to PET findings: stage 0: normal CBF, normal perfusion reserve; stage I: normal CBF, decreased perfusion reserve; and stage II: decreased CBF, decreased perfusion reserve. The BOLD CVR data set of the same subjects was then matched to the corresponding stage of hemodynamic failure.

RESULTS: PET-based stage I versus stage II could also be clearly separated with BOLD CVR measurements (CVR for stage I 0.11 versus CVR for stage II -0.03; P <0.01). Hemispheric and middle cerebral artery territory difference analyses (ie, affected versus unaffected side) showed a significant correlation for CVR impairment in the affected hemisphere and middle cerebral artery territory ( P <0.01, R 2 =0.47 and P =0.02, R 2 = 0.25, respectively).

CONCLUSIONS: BOLD CVR corresponded well to CBF perfusion reserve measurements obtained with (15 O-)H2 O-PET, especially for detecting hemodynamic failure in the affected hemisphere and middle cerebral artery territory and for identifying hemodynamic failure stage II. BOLD CVR may, therefore, be considered for prospective studies assessing stroke risk in patients with chronic cerebrovascular steno-occlusive disease, in particular because it can potentially be implemented in routine clinical imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app