Add like
Add dislike
Add to saved papers

l-Carnitine Inhibits Lipopolysaccharide-Induced Nitric Oxide Production of SIM-A9 Microglia Cells.

Microglia are the resident immune effector cells of the central nervous system. They account for approximately 10-15% of all cells found in the brain and spinal cord, acting as macrophages, sensing and engaging in phagocytosis to eliminate toxic proteins. Microglia are dynamic and can change their morphology in response to cues from their milieu. Parkinson's disease is a neurodegenerative disease, associated with reactive gliosis, neuroinflammation, and oxidative stress. It is thought that Parkinson's disease is caused by the accumulation of abnormally folded alpha-synuclein protein, accompanied by persistent neuroinflammation, oxidative stress, and subsequent neuronal injury/death. There is evidence in the literature for mitochondrial dysfunction in Parkinson's disease as well as fatty acid beta-oxidation, involving l-carnitine. Here we investigate l-carnitine in the context of microglial activation, suggesting a potential new strategy of supplementation for PD patients. Preliminary results from our studies suggest that the treatment of activated microglia with the endogenous antioxidant l-carnitine can reverse the effects of detrimental neuroinflammation in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app