Add like
Add dislike
Add to saved papers

Axonal outgrowth stimulation after alginate/mesenchymal stem cell therapy in injured rat spinal cord.

Despite strong efforts in the field, spinal cord trauma still belongs among the untreatable neurological conditions at present. Given the complexity of the nervous system, an effective therapy leading to complete recovery has still not been found. One of the potential tools for supporting tissue regeneration may be found in mesenchymal stem cells, which possess anti‑inflammatory and trophic factor‑producing properties. In the context of transplantations, application of degradable biomaterials which could form a supportive environment and scaffold to bridge the lesion area represents another attractive strategy. In the present study, through a combination of these two approaches we applied both alginate hydrogel biomaterial alone or allogenic transplants of MSCs isolated from bone marrow seeded in alginate biomaterial into injured rat spinal cord at three weeks after spinal cord compression performed at Th8‑9 level. Following three‑week survival, using immunohistochemistry we studied axonal growth (GAP‑43 expression) and both microglia (Iba‑1) and astrocyte (GFAP) reactions at the lesion site and in the segments below and above the lesion. To detect functional improvement, during whole survival period we performed behavioral analyses of locomotor abilities using a classical open field test (BBB score) and a Catwalk automated gait analyzing device (Noldus). We found that despite the absence of locomotor improvement, application of both alginate and MSCs caused significant increase in the number of GAP‑43 positive axons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app