Add like
Add dislike
Add to saved papers

CoHPi Nanoflakes for Enhanced Oxygen Evolution Reaction.

Electrochemical splitting of water to produce hydrogen and oxygen is an important process for many energy storage and conversion devices. Developing efficient, robust, low-cost, and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is therefore of great importance. Herein, we report a novel method to prepare two-dimensional cobalt hydrogen phosphate (CoHPi) through chemical conversion of α-Co(OH)2 precursor at room temperature. The CoHPi nanoflakes with the thickness of 3 nm contain HPO4 2- anions, which have been demonstrated to serve as a proton acceptor in proton-coupled electron-transfer (PCET) process of OER. Due to their ultrathin structure and the PCET merit of anions, the CoHPi nanoflakes show enhanced OER activity as well as excellent stability in prolonged OER operation. Through further mechanism study, the observed performances can be ascribed to enriched active sites, surface superhydrophilicity, and rapid electron/proton and mass transfers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app