Add like
Add dislike
Add to saved papers

Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet-Biedl Syndrome 9 ( BBS9 ) deletion.

Bardet-Biedl syndrome (BBS) is a recessive disorder characterized by heterogeneous clinical manifestations, including truncal obesity, rod-cone dystrophy, renal anomalies, postaxial polydactyly, and variable developmental delays. At least 20 genes have been implicated in BBS, and all are involved in primary cilia function. We report a 1-year-old male child from Guyana with obesity, postaxial polydactyly on his right foot, hypotonia, ophthalmologic abnormalities, and developmental delay, which together indicated a clinical diagnosis of BBS. Clinical chromosomal microarray (CMA) testing and high-throughput BBS gene panel sequencing detected a homozygous 7p14.3 deletion of exons 1-4 of BBS9 that was encompassed by a 17.5 Mb region of homozygosity at chromosome 7p14.2-p21.1. The precise breakpoints of the deletion were delineated to a 72.8 kb region in the proband and carrier parents by third-generation long-read single molecule real-time (SMRT) sequencing (Pacific Biosciences), which suggested non-homologous end joining as a likely mechanism of formation. Long-read SMRT sequencing of the deletion breakpoints also determined that the aberration included the neighboring RP9 gene implicated in retinitis pigmentosa; however, the clinical significance of this was considered uncertain given the paucity of reported cases with unambiguous RP9 mutations. Taken together, our study characterized a BBS9 deletion, and the identification of this shared haplotype in the parents suggests that this pathogenic aberration may be a BBS founder mutation in the Guyanese population. Importantly, this informative case also highlights the utility of long-read SMRT sequencing to map nucleotide breakpoints of clinically relevant structural variants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app