Journal Article
Observational Study
Add like
Add dislike
Add to saved papers

A mini-fluid challenge of 150mL predicts fluid responsiveness using Modelflow R pulse contour cardiac output directly after cardiac surgery.

STUDY OBJECTIVE: The mini-fluid challenge may predict fluid responsiveness with minimum risk of fluid overloading. However, the amount of fluid as well as the best manner to evaluate the effect is unclear. In this prospective observational pilot study, the value of changes in pulse contour cardiac output (CO) measurements during mini-fluid challenges is investigated.

DESIGN: Prospective observational study.

SETTING: Intensive Care Unit of a university hospital.

PATIENTS: Twenty-one patients directly after elective cardiac surgery on mechanical ventilation.

INTERVENTIONS: The patients were subsequently given 10 intravenous boluses of 50mL of hydroxyethyl starch with a total of 500mL per patient while measuring pulse contour CO.

MEASUREMENTS: We measured CO by minimal invasive ModelflowR (COm) and PulseCOR (COli), before and one minute after each fluid bolus. We analyzed the smallest volume that was predictive of fluid responsiveness. A positive fluid response was defined as an increase in CO of >10% after 500mL fluid infusion.

MAIN RESULTS: Fifteen patients (71%) were COm responders and 13 patients (62%) COli responders. An increase in COm after 150mL of fluid >5.0% yielded a positive and negative predictive value (+PV and -PV) of 100% with an area under the curve (AUC) of 1.00 (P<0.001). An increase in COli >6.3% after 200mL was able to predict a fluid response in COli after 500mL with a +PV of 100% and -PV of 73%, with an AUC of 0.88 (P<0.001).

CONCLUSION: The use of minimal invasive ModelflowR pulse contour CO measurements following a mini-fluid challenge of 150mL can predict fluid responsiveness and may help to improve fluid management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app