Add like
Add dislike
Add to saved papers

PEP-1-glutaredoxin-1 induces dedifferentiation of rabbit articular chondrocytes by the endoplasmic reticulum stress-dependent ERK-1/2 pathway and the endoplasmic reticulum stress-independent p38 kinase and PI-3 kinase pathways.

Glutaredoxin-1 (GRX-1), belonging to the oxidoreductase family, is a component of the endogenous antioxidant defense system. In this study, we evaluated the effects of PEP-1-GRX-1 in rabbit articular chondrocytes. We found that PEP-1-GRX-1 causes a loss of the differentiated chondrocyte phenotype. PEP-1-GRX-1-treated cells exhibited decreases in type II collagen expression and sulfated-proteoglycan synthesis in a dose- and time-dependent manner. PEP-1-GRX-1 causes endoplasmic reticulum (ER)-stress, as evidenced by increases in ER stress marker proteins, i.e., glucose-regulated protein (GRP) 78, GRP 94, and phospho-eukaryotic initiation factor 2 (eIF2) α. These effects were inhibited by ER stress inhibitors. PEP-1-GRX-1 increased the phosphorylation of Akt, extracellular signal-regulated kinase (ERK)-1/2, and p38. Inhibition of ERK-1/2 by PD98059 prevented PEP-1-GRX-1-induced dedifferentiation and inhibited ER stress. The blockage of PI-3K/Akt or p38 kinase with SB203580 and LY294002 accelerated PEP-1-GRX-1-induced dedifferentiation, but did not have any effect on PEP-GRX-1-induced ER stress. Our results indicate that the ERK-1/2 pathway mediates chondrocyte dedifferentiation by PEP-GRX-1-induced ER stress. The PI-3K and p38 kinase pathways regulate PEP-1-GRX-1-induced chondrocyte dedifferentiation by an ER stress-independent pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app