Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Primate-specific miRNA-637 inhibited tumorigenesis in human pancreatic ductal adenocarcinoma cells by suppressing Akt1 expression.

Experimental Cell Research 2018 Februrary 16
As a primate-specific microRNA, miR-637 has been discovered for nearly 10 years. Our previous study demonstrated that miR-637 acted as a suppressor in hepatocellular carcinoma. However, its biomedical significance in pancreatic cancer remains obscure. In the present study, miR-637 was found to be significantly downregulated in pancreatic ductal adenocarcinoma (PDAC) cell lines and most of the PDAC specimens. Furthermore, the enforced overexpression of miR-637 dramatically inhibited cell proliferation and induced apoptosis of PDAC cells. Akt1, as a serine/threonine-protein kinase, has been identified as an oncogene in multiple cancers including pancreatic cancer. Our data confirmed that Akt1 was a novel target for miR-637, and its knockdown also induced cell growth inhibition and apoptosis in PDAC cells. In conclusion, our data indicated that miR-637 acted as a tumor-suppressor in PDAC, and the suppressive effect was mediated, at least partially, by suppressing Akt1 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app