JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Quantitative proteomics of plasma vesicles identify novel biomarkers for hemoglobin E/β-thalassemic patients.

Blood Advances 2018 January 24
Hemoglobin E (HbE)/β-thalassemia has a wide spectrum of clinical manifestations that cannot be explained purely by its genetic background. Circulating extracellular vesicles (EVs) are one factor that likely contributes to disease severity. This study has explored the differences in protein composition and quantity between EVs from HbE/β-thalassemic patients and healthy individuals. We used tandem mass tag labeling mass spectrometry to analyze the EV proteins isolated from the plasma of 15 patients compared with the controls. To reduce biological variation between individuals, the EV proteins isolated from randomly assigned groups of 5 HbE/β-thalassemic patients were pooled and compared with 5 pooled age- and sex-matched controls in 3 separate experiments. Alpha hemoglobin-stabilizing protein had the highest fold increase. Catalase, superoxide dismutase, T-complex proteins, heat shock proteins, transferrin receptor, ferritin, and cathepsin S were also upregulated in thalassemic circulating EVs. Importantly, haptoglobin and hemopexin were consistently reduced in patients' EVs across all data sets, in keeping with the existing hemolysis that occurs in thalassemia. The proteomic data analysis of EV samples isolated from 6 individual HbE/β-thalassemic patients and western blotting results corroborated these findings. In conclusion, we have successfully identified consistent alterations of protein quantity between EVs from HbE/β-thalassemic and healthy individuals. This work highlights haptoglobin, hemopexin, and cathepsin S as potential clinically relevant biomarkers for levels of hemolysis and inflammation. Monitoring of these plasma proteins could help in the clinical management of thalassemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app