Add like
Add dislike
Add to saved papers

Angiotensin AT 1A receptors expressed in vasopressin-producing cells of the supraoptic nucleus contribute to osmotic control of vasopressin.

Angiotensin II (ANG) stimulates the release of arginine vasopressin (AVP) from the neurohypophysis through activation of the AT1 receptor within the brain, although it remains unclear whether AT1 receptors expressed on AVP-expressing neurons directly mediate this control. We explored the hypothesis that ANG acts through AT1A receptors expressed directly on AVP-producing cells to regulate AVP secretion. In situ hybridization and transgenic mice demonstrated localization of AVP and AT1A mRNA in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN), but coexpression of both AVP and AT1A mRNA was only observed in the SON. Mice harboring a conditional allele for the gene encoding the AT1A receptor (AT1A flox ) were then crossed with AVP-Cre mice to generate mice that lack AT1A in all cells that express the AVP gene (AT1A AVP-KO ). AT1A AVP-KO mice exhibited spontaneously increased plasma and serum osmolality but no changes in fluid or salt-intake behaviors, hematocrit, or total body water. AT1A AVP-KO mice exhibited reduced AVP secretion (estimated by measurement of copeptin) in response to osmotic stimuli such as acute hypertonic saline loading and in response to chronic intracerebroventricular ANG infusion. However, the effects of these receptors on AVP release were masked by complex stimuli such as overnight dehydration and DOCA-salt treatment, which simultaneously induce osmotic, volemic, and pressor stresses. Collectively, these data support the expression of AT1A in AVP-producing cells of the SON but not the PVN, and a role for AT1A receptors in these cells in the osmotic regulation of AVP secretion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app