Add like
Add dislike
Add to saved papers

Global and gene-specific DNA methylation and hydroxymethylation in human skin exposed and not exposed to sun radiation.

BACKGROUND: epigenomes can be influenced by environmental factors leading to the development of diseases.

OBJECTIVE: To investigate the influence of sun exposure on global DNA methylation and hydroxymethylation status and at specific sites of the miR-9-1, miR-9-3 and MTHFR genes in skin samples of subjects with no history of skin diseases.

METHODS: Skin samples were obtained by punch on sun-exposed and sun-protected arm areas from 24 corpses of 16-89 years of age. Genomic DNA was extracted from skin samples that were ranked according to Fitzpatrick's criteria as light, moderate, and dark brown. Global DNA methylation and hydroxymethylation and DNA methylation analyses at specific sites were performed using ELISA and MSP, respectively.

RESULTS: No significant differences in global DNA methylation and hydroxymethylation levels were found among the skin areas, skin types, or age. However, gender-related differences were detected, where women showed higher methylation levels. Global DNA methylation levels were higher than hydroxymethylation levels, and the levels of these DNA modifications correlated in skin tissue. For specific sites, no differences among the areas were detected. Additional analyses showed no differences in the methylation status when age, gender, and skin type were considered; however, the methylation status of the miR-9-1 gene seems to be gender related.

STUDY LIMITATIONS: there was no separation of dermis and epidermis and low sample size.

CONCLUSION: sun exposure does not induce changes in the DNA methylation and hydroxymethylation status or in miR-9-1, miR-9-3 and MTHFR genes for the studied skin types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app