JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Studying the Hypothalamic Insulin Signal to Peripheral Glucose Intolerance with a Continuous Drug Infusion System into the Mouse Brain.

Insulin regulates systematic metabolism in the hypothalamus and the peripheral insulin response. An inflammatory reaction in peripheral adipose tissues contributes to type 2 diabetes mellitus (T2DM) development and appetite regulation in the hypothalamus. Chemokine CCL5 and C-C chemokine receptor type 5 (CCR5) levels have been suggested to mediate arteriosclerosis and glucose intolerance in type 2 diabetes mellitus (T2DM). In addition, CCL5 plays a neuroendocrine role in the hypothalamus by regulating food intake and body temperature, thus, prompting us to investigate its function in hypothalamic insulin signaling and the regulation of peripheral glucose metabolism. The micro-osmotic pump brain infusion system is a quick and precise way to manipulate CCL5 function and study its effect in the brain. It also provides a convenient alternative approach to generating a transgenic knockout animal. In this system, CCL5 signaling was blocked by intracerebroventricular (ICV) infusion of its antagonist, Met CCL5, using a micro-osmotic pump. The peripheral glucose metabolism and insulin responsiveness was detected by the Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). Insulin signaling activity was then analyzed by protein blot from tissue samples derived from the animals. After 7-14 days of Met CCL5 infusion, the glucose metabolism and insulin responsiveness was impaired in mice, as seen in the results of the OGTT and ITT. The IRS-1 serine302 phosphorylation was increased and the Akt activity was reduced in mice hypothalamic neurons following CCL5 inhibition. Altogether, our data suggest that blocking CCL5 in the mouse brain increases the phosphorylation of IRS-1 S302 and interrupts hypothalamic insulin signaling, leading to a decrease in insulin function in peripheral tissues as well as the impairment of glucose metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app