Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

Modified Roller Tube Method for Precisely Localized and Repetitive Intermittent Imaging During Long-term Culture of Brain Slices in an Enclosed System.

Cultured rodent brain slices are useful for studying the cellular and molecular behavior of neurons and glia in an environment that maintains many of their normal in vivo interactions. Slices obtained from a variety of transgenic mouse lines or use of viral vectors for expression of fluorescently tagged proteins or reporters in wild type brain slices allow for high-resolution imaging by fluorescence microscopy. Although several methods have been developed for imaging brain slices, combining slice culture with the ability to perform repetitive high-resolution imaging of specific cells in live slices over long time periods has posed problems. This is especially true when viral vectors are used for expression of exogenous proteins since this is best done in a closed system to protect users and prevent cross contamination. Simple modifications made to the roller tube brain slice culture method that allow for repetitive high-resolution imaging of slices over many weeks in an enclosed system are reported. Culturing slices on photoetched coverslips permits the use of fiducial marks to rapidly and precisely reposition the stage to image the identical field over time before and after different treatments. Examples are shown for the use of this method combined with specific neuronal staining and expression to observe changes in hippocampal slice architecture, viral-mediated neuronal expression of fluorescent proteins, and the development of cofilin pathology, which was previously observed in the hippocampus of Alzheimer's disease (AD) in response to slice treatment with oligomers of amyloid-β (Aβ) peptide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app