Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Plant Promoter Analysis: Identification and Characterization of Root Nodule Specific Promoter in the Common Bean.

The upstream sequences of gene coding sequences are termed as promoter sequences. Studying the expression patterns of promoters are very significant in understanding the gene regulation and spatiotemporal expression patterns of target genes. On the other hand, it is also critical to establish promoter evaluation tools and genetic transformation techniques that are fast, efficient, and reproducible. In this study, we investigated the spatiotemporal expression pattern of the rhizobial symbiosis-specific nodule inception (NIN) promoter of Phaseolus vulgaris in the transgenic hairy roots. Using plant genome databases and analysis tools we identified, isolated, and cloned the P. vulgaris NIN promoter in a transcriptional fusion to the chimeric reporter β-glucuronidase (GUS) GUS-enhanced::GFP. Further, this protocol describes a rapid and versatile system of genetic transformation in the P. vulgaris using Agrobacterium rhizogenes induced hairy roots. This system generates ≥2 cm hairy roots at 10 to 12 days after transformation. Next, we assessed the spatiotemporal expression of NIN promoter in Rhizobium inoculated hairy roots at periodic intervals of post-inoculation. Our results depicted by GUS activity show that the NIN promoter was active during the process of nodulation. Together, the present protocol demonstrates how to identify, isolate, clone, and characterize a plant promoter in the common bean hairy roots. Moreover, this protocol is easy to use in non-specialized laboratories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app