JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Generation and Confinement of Long-Lived N-Oxyl Radical and Its Photocatalysis.

Generation of controllable carbon radical under the assistance of N-oxyl radical is an efficient method for the activation of C-H bonds in hydrocarbons. We herein report that irradiation of α-Fe2 O3 and N-hydroxyphthalimide (NHPI) under 455 nm light generates phthalimide-N-oxyl radical (PINO*), which after being formed by oxidation with holes, is confined on α-Fe2 O3 surface. The half-life time of the confined radical reaches 22 s as measured by in situ electron paramagnetic resonance (EPR) after the light being turned off. This allows the long-lived N-oxyl radical to abstract the H from C-H bond to form a carbon radical that reacts with molecular oxygen to form R3 C-OO· species, decomposition of which leads to oxygenated products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app