Add like
Add dislike
Add to saved papers

Oriented Nanofibrous Polymer Scaffolds Containing Protein-Loaded Porous Silicon Generated by Spray Nebulization.

Oriented composite nanofibers consisting of porous silicon nanoparticles (pSiNPs) embedded in a polycaprolactone or poly(lactide-co-glycolide) matrix are prepared by spray nebulization from chloroform solutions using an airbrush. The nanofibers can be oriented by an appropriate positioning of the airbrush nozzle, and they can direct growth of neurites from rat dorsal root ganglion neurons. When loaded with the model protein lysozyme, the pSiNPs allow the generation of nanofiber scaffolds that carry and deliver the protein under physiologic conditions (phosphate-buffered saline (PBS), at 37 °C) for up to 60 d, retaining 75% of the enzymatic activity over this time period. The mass loading of protein in the pSiNPs is 36%, and in the resulting polymer/pSiNP scaffolds it is 3.6%. The use of pSiNPs that display intrinsic photoluminescence (from the quantum-confined Si nanostructure) allows the polymer/pSiNP composites to be definitively identified and tracked by time-gated photoluminescence imaging. The remarkable ability of the pSiNPs to protect the protein payload from denaturation, both during processing and for the duration of the long-term aqueous release study, establishes a model for the generation of biodegradable nanofiber scaffolds that can load and deliver sensitive biologics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app