Add like
Add dislike
Add to saved papers

Mechanisms Underlying Chronic Binge Alcohol Exposure-Induced Uterine Artery Dysfunction in Pregnant Rat.

BACKGROUND: A cardinal feature of fetal alcohol syndrome is growth restriction. Maternal uterine artery adaptations to pregnancy correlate with birthweight and survival. We hypothesized that gestational binge alcohol exposure impairs maternal uterine vascular function, affecting endothelial nitric oxide (NO)-mediated vasodilation.

METHODS: Pregnant rats grouped as pair-fed control or binge alcohol exposed received a once-daily, orogastric gavage of isocaloric maltose-dextrin or alcohol, respectively. On gestational day 20, primary uterine arteries were isolated, cannulated, and connected to a pressure transducer, and functional studies were conducted by dual-chamber arteriography. Uterine arteries maintained at constant intramural pressure (90 mm Hg) were maximally constricted with thromboxane, and a dose-response for acetylcholine (Ach) was recorded.

RESULTS: The alcohol group exhibited significantly impaired endothelium-dependent, Ach-induced uterine artery relaxation (↓∼30%). Subsequently, a dose-response was recorded following inhibition of endothelium-derived hyperpolarizing factor (apamin and TRAM-34) and prostacyclin (indomethacin). Ach-induced relaxation in the pair-fed control decreased by ~46%, and interestingly, relaxation in alcohol group further decreased by an additional ~48%, demonstrating that gestational binge alcohol impairs the NO system in the primary uterine artery. An endothelium-independent sodium nitroprusside effect was not observed. Immunoblotting indicated that alcohol decreased the level of endothelial excitatory P-Ser1177 endothelial NO synthase (eNOS) (p < 0.05) and total eNOS expression (p < 0.05) compared to both the normal and pair-fed controls. P-Ser1177 eNOS level was also confirmed by immunofluorescence imaging.

CONCLUSIONS: This is the first study to demonstrate maternal binge alcohol consumption during pregnancy disrupts uterine artery vascular function via impairment of the eNOS vasodilatory system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app