Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Repeated Morphine Produces Sensitization to Reward and Tolerance to Antiallodynia in Male and Female Rats with Chemotherapy-Induced Neuropathy.

Paclitaxel is a cancer chemotherapy drug with adverse effects that include chemotherapy-induced neuropathic pain (CINP) as well as depression of behavior and mood. In the clinical setting, opioids are often used concurrently with or after chemotherapy to treat pain related to the cancer or CINP, but repeated opioid exposure can also increase the risk of opioid abuse. In this study, male and female Sprague-Dawley rats were used to test the hypothesis that repeated 3.2-mg/kg doses of morphine would induce tolerance to its antinociceptive effects in a mechanical sensitivity assay and increased expression of its abuse-related rewarding effects in an assay of intracranial self-stimulation (ICSS). Three weeks after four injections of vehicle or 2.0 mg/kg of paclitaxel, the initial morphine dose-effect curves were determined in both assays. Subsequently, rats were treated with 3.2 mg/kg per day morphine for 6 days. On the final day of testing, morphine dose-effect curves were redetermined in both assays. On initial exposure, morphine produced dose-dependent antiallodynia in the assay of mechanical sensitivity, but it produced little or no rewarding effects in the assay of ICSS. After 6 days of repeated treatment, morphine antiallodynia decreased, and morphine reward increased. Females exhibited greater morphine reward on initial exposure than males, but repeated morphine eliminated this sex difference. These results suggest that repeated morphine may produce tolerance to therapeutically beneficial analgesic effects of morphine but increased sensitivity to abuse-related rewarding effects of morphine in subjects treated with paclitaxel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app