Add like
Add dislike
Add to saved papers

A 'molecular guillotine' reveals the interphase function of Kinesin-5.

Journal of Cell Science 2018 Februrary 9
Motor proteins are important for transport and force generation in a variety of cellular processes and in morphogenesis. Here, we describe a general strategy for conditional motor mutants by inserting a protease cleavage site into the 'neck' between the head domain and the stalk of the motor protein, making the protein susceptible to proteolytic cleavage at the neck by the corresponding protease. To demonstrate the feasibility of this approach, we inserted the cleavage site of the tobacco etch virus (TEV) protease into the neck of the tetrameric motor Kinesin-5. Application of TEV protease led to a specific depletion and functional loss of Kinesin-5 in Drosophila embryos. With our approach, we revealed that Kinesin-5 stabilizes the microtubule network during interphase in syncytial embryos. The 'molecular guillotine' can potentially be applied to many motor proteins because Kinesins and myosins have conserved structures with accessible neck regions.This article has an associated First Person interview with the first author of the paper.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app