Add like
Add dislike
Add to saved papers

Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information.

Background: Tumor-specific mutations form novel immunogenic peptides called neoantigens. Neoantigens can be used as a biomarker predicting patient response to cancer immunotherapy. Although a predicted binding affinity (IC50) between peptide and major histocompatibility complex class I is currently used for neoantigen prediction, large number of false-positives exist.

Materials and methods: We developed Neopepsee, a machine-learning-based neoantigen prediction program for next-generation sequencing data. With raw RNA-seq data and a list of somatic mutations, Neopepsee automatically extracts mutated peptide sequences and gene expression levels. We tested 14 immunogenicity features to construct a machine-learning classifier and compared with the conventional methods based on IC50 regarding sensitivity and specificity. We tested Neopepsee on independent datasets from melanoma, leukemia, and stomach cancer.

Results: Nine of the 14 immunogenicity features that are informative and inter-independent were used to construct the machine-learning classifiers. Neopepsee provides a rich annotation of candidate peptides with 87 immunogenicity-related values, including IC50, expression levels of neopeptides and immune regulatory genes (e.g. PD1, PD-L1), matched epitope sequences, and a three-level (high, medium, and low) call for neoantigen probability. Compared with the conventional methods, the performance was improved in sensitivity and especially two- to threefold in the specificity. Tests with validated datasets and independently proven neoantigens confirmed the improved performance in melanoma and chronic lymphocytic leukemia. Additionally, we found sequence similarity in proteins to known pathogenic epitopes to be a novel feature in classification. Application of Neopepsee to 224 public stomach adenocarcinoma datasets predicted ∼7 neoantigens per patient, the burden of which was correlated with patient prognosis.

Conclusions: Neopepsee can detect neoantigen candidates with less false positives and be used to determine the prognosis of the patient. We expect that retrieval of neoantigen sequences with Neopepsee will help advance research on next-generation cancer immunotherapies, predictive biomarkers, and personalized cancer vaccines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app