Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer.

Nano Letters 2018 Februrary 15
Designing high-quality interfaces is crucial for high-performance photoelectrochemical (PEC) water-splitting devices. Here, we demonstrate a facile integration between polycrystalline n+ p-Si and NiFe-layered double hydroxide (LDH) nanosheet array by a partially activated Ni (Ni/NiOx ) bridging layer for the excellent PEC water oxidation. In this model system, the thermally deposited Ni interlayer protects Si against corrosion and makes good contact with Si, and NiOx has a high capacity of hole accumulation and strong bonding with the electrodeposited NiFe-LDH due to the similarity in material composition and structure, facilitating transfer of accumulated holes to the catalyst. In addition, the back illumination configuration makes NiFe-LDH sufficiently thick for more catalytically active sites without compromising Si light absorption. This earth-abundant multicomponent photoanode affords the PEC performance with an onset potential of ∼0.78 V versus reversible hydrogen electrode (RHE), a photocurrent density of ∼37 mA cm-2 at 1.23 V versus RHE, and retains good stability in 1.0 M KOH, the highest water oxidation activity so far reported for the crystalline Si-based photoanodes. This bridging layer strategy is efficient and simple to smooth charge transfer and make robust contact at the semiconductor/electrocatalyst interface in the solar water-splitting systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app