ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Variation analysis of the number of copies and methylene patterns in region 15q11-q13].

Human chromosome 15q11-q13 region is prone to suffer genetic alterations. Some genes of this region have a differential monoallelic imprinting-regulated expression pattern. Defects in imprinting regulation (IE), uniparental disomy (UPD) or copy number variation (CNV) due to chromosomal breakpoints (BP) in 15q11-q13 region, are associated with several diseases. The most frequent are Prader-Willi syndrome, Angelman syndrome and 15q11-q13 microduplication syndrome. In this work, we analyzed DNA samples from 181 patients with phenotypes which were compatible with the above-mentioned diseases, using Methyl specific-multiplex ligation-dependent probe amplification (MS-MLPA). We show that, of the 181 samples, 39 presented alterations detectable by MS-MLPA. Of those alterations, 61.5% (24/39) were deletions, 5.1% (2/39) duplications and 33.3% (13/39) UPD/IE. The CNV cases were 4 times more frequent than UPD/IE (OR= 4; IC 95%: 1.56-10.25), consistent with the literature. Among the CNVs, two atypical cases allow to postulate new possible BP sites that have not been reported previously in the literature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app