Add like
Add dislike
Add to saved papers

Cholesterol-GalNAc Dual Conjugation Strategy for Reducing Renal Distribution of Antisense Oligonucleotides.

Recently, some studies have reported nephrotoxicity associated with a certain class of antisense oligonucleotides (ASOs) in humans. One possibility for reducing the potential nephrotoxicity of ASOs is to alter their pharmacokinetics. In this study, we investigated the effect of a ligand conjugation strategy on the renal accumulation of ASOs. We selected two ligands, cholesterol and N-acetylgalactosamine (GalNAc), with the purpose of reducing renal distribution and liver targeting, and then designed a series of cholesterol-GalNAc dual conjugated ASOs. The gene-silencing activity of the cholesterol-GalNAc dual conjugated ASO in the liver was slightly lower than that of a GalNAc-conjugated ASO. On the other hand, the renal distribution of the cholesterol-GalNAc dual conjugated ASO was considerably decreased compared with the GalNAc-conjugated ASO, as we expected. As dual conjugation was successful in reducing the renal distribution of ASO, it should be an effective strategy for reducing the nephrotoxic potential of ASOs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app