Journal Article
Review
Add like
Add dislike
Add to saved papers

Disruption of mammalian SWI/SNF and polycomb complexes in human sarcomas: mechanisms and therapeutic opportunities.

Soft-tissue sarcomas are increasingly characterized and subclassified by genetic abnormalities that represent underlying drivers of their pathology. Hallmark tumor suppressor gene mutations and pathognomonic gene fusions collectively account for approximately one-third of all sarcomas. These genetic abnormalities most often result in global transcriptional misregulation via disruption of protein regulatory complexes which govern chromatin architecture. Specifically, alterations to mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes and polycomb repressive complexes cause disease-specific changes in chromatin architecture and gene expression across a number of sarcoma subtypes. Understanding the functions of chromatin regulatory complexes and the mechanisms underpinning their roles in oncogenesis will be required for the design and development of new therapeutic strategies in sarcomas. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app