Add like
Add dislike
Add to saved papers

Statistical Power in Two-Level Hierarchical Linear Models with Arbitrary Number of Factor Levels.

As the US health care system undergoes unprecedented changes, the need for adequately powered studies to understand the multiple levels of main and interaction factors that influence patient and other care outcomes in hierarchical settings has taken center stage. We consider two-level models where n lower-level units are nested within each of J higher-level clusters (e.g. patients within practices and practices within networks) and where two factors may have arbitrary a and b factor levels, respectively. Both factors may represent a × b treatment combinations, or one of them may be a pretreatment covariate. Consideration of both factors at the same higher or lower hierarchical level, or one factor per hierarchical level yields a cluster (C), multisite (M) or split-plot randomized design (S). We express statistical power to detect main, interaction, or any treatment effects as a function of sample sizes ( n, J ), a and b factor levels, intraclass correlation ρ and effect sizes δ given each design d ∈ { C, M, S }. The power function given a, b, ρ, δ and d determines adequate sample sizes to achieve a minimum power requirement. Next, we compare the impact of the designs on power to facilitate selection of optimal design and sample sizes in a way that minimizes the total cost given budget and logistic constraints. Our approach enables accurate and conservative power computation with a priori knowledge of only three effect size differences regardless of how large a × b is, simplifying previously available computation methods for health services and other researches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app