Add like
Add dislike
Add to saved papers

STIM2 (Stromal Interaction Molecule 2)-Mediated Increase in Resting Cytosolic Free Ca 2+ Concentration Stimulates PASMC Proliferation in Pulmonary Arterial Hypertension.

Hypertension 2018 March
An increase in cytosolic free Ca2+ concentration ([Ca2+ ]cyt ) in pulmonary artery smooth muscle cells (PASMCs) triggers pulmonary vasoconstriction and stimulates PASMC proliferation leading to vascular wall thickening. Here, we report that STIM2 (stromal interaction molecule 2), a Ca2+ sensor in the sarcoplasmic reticulum membrane, is required for raising the resting [Ca2+ ]cyt in PASMCs from patients with pulmonary arterial hypertension (PAH) and activating signaling cascades that stimulate PASMC proliferation and inhibit PASMC apoptosis. Downregulation of STIM2 in PAH-PASMCs reduces the resting [Ca2+ ]cyt , whereas overexpression of STIM2 in normal PASMCs increases the resting [Ca2+ ]cyt The increased resting [Ca2+ ]cyt in PAH-PASMCs is associated with enhanced phosphorylation (p) of CREB (cAMP response element-binding protein), STAT3 (signal transducer and activator of transcription 3), and AKT, increased NFAT (nuclear factor of activated T-cell) nuclear translocation, and elevated level of Ki67 (a marker of cell proliferation). Furthermore, the STIM2-associated increase in the resting [Ca2+ ]cyt also upregulates the antiapoptotic protein Bcl-2 in PAH-PASMCs. Downregulation of STIM2 in PAH-PASMCs with siRNA (1) decreases the level of pCREB, pSTAT3, and pAKT and inhibits NFAT nuclear translocation, thereby attenuating proliferation, and (2) decreases Bcl-2, which leads to an increase of apoptosis. In summary, these data indicate that upregulated STIM2 in PAH-PASMCs, by raising the resting [Ca2+ ]cyt , contributes to enhancing PASMC proliferation by activating the CREB, STAT3, AKT, and NFAT signaling pathways and stimulating PASMC proliferation. The STIM2-associated increase in the resting [Ca2+ ]cyt is also involved in upregulating Bcl-2 that makes PAH-PASMCs resistant to apoptosis, and thus plays an important role in sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in patients with PAH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app