Add like
Add dislike
Add to saved papers

miR-1301-3p promotes prostate cancer stem cell expansion by targeting SFRP1 and GSK3β.

Cancer stem cells promote tumor progression, drug-resistance, and relapse, and many microRNAs (miRNAs) play critical roles in the expansion of cancer stem cells. In the present study, we investigated the role of miR-1301-3p in the expansion of prostate cancer stem cells; miR-1301-3p was significantly upregulated in prostate cancer cells and tissues compared with normal prostate cells and tissues. Sphere formation and side population assays suggested that miR-1301-3p promoted the expansion of prostate cancer stem cells, and increased the expression of prostate cancer stem cell-associated genes, such as OCT4, SOX2, NANOG, CD44, KLF4, c-MYC, and MMP2. MiR-1301-3p targeted Wnt pathway inhibitors, GSK3β and SFRP1, and inhibited their expression by directly binding to their 3' untranslated regions. TOP/FOP luciferase assays suggested that miR-1301-3p activated the Wnt pathway, which was confirmed by increased β-catenin expression in the nucleus. Furthermore, the miR-1301-3p level correlated negatively with GSK3β and SFRP1 in prostate cancer tissues. In summary, we found that miR-1301-3p promoted the expansion of prostate cancer stem cells by inhibiting GSK3β and SFRP1, and activating the Wnt pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app