Add like
Add dislike
Add to saved papers

Acceleration of the healing process of full-thickness wounds using hydrophilic chitosan-silica hybrid sponge in a porcine model.

In this study, we evaluated the surface characterization of a novel chitosan-silica hybridized membrane and highlighted the substantial role of silica in the wound environment. The chemical coupling of chitosan and silica resulted in a more condensed network compared with pure chitosan, which was eventually able to stably maintain its framework, particularly in the wet state. In addition, we closely observed the wound-healing process along with the surface interaction between chitosan-silica and the wound site using large-surface-area wounds in a porcine model. Our evidence indicates that chitosan-silica exerts a synergetic effect of both materials to promote a remarkable wound-healing process. In particular, the silica in chitosan-silica accelerated wound closure including wound contraction, and re-epithelialization via enhancement of cell recruitment, epidermal maturity, neovascularization, and granulation tissue formation compared with pure chitosan and other commercial dressing materials. This advanced wound dressing material may lead to effective treatment for problematic cutaneous wounds and can be further applied for human skin regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app