Add like
Add dislike
Add to saved papers

Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis.

We sought to decipher the mechanisms underlying the kidney's response to changes in K+ load and intake, under physiological and pathophysiological conditions. To accomplish that goal, we applied a published computational model of epithelial transport along rat nephrons in a sham rat, an uninephrectomized (UNX) rat, and a 5/6-nephrectomized (5/6-NX) rat that also considers adaptations in glomerular filtration rate and tubular growth. Model simulations of an acute K+ load indicate that elevated expression levels and activities of Na+ /K+ -ATPase, epithelial sodium channels, large-conductance Ca2+ -activated K+ channels, and renal outer medullary K+ channels, together with downregulation of sodium-chloride cotransporters (NCC), increase K+ secretion along the connecting tubule, resulting in a >6-fold increase in urinary K+ excretion in sham rats, which substantially exceeds the filtered K+ load. In the UNX and 5/6-NX models, the acute K+ load is predicted to increase K+ excretion, but at significantly reduced levels compared with sham. Acute K+ load is accompanied by natriuresis in sham rats. Model simulations suggest that the lesser natriuretic effect observed in the nephrectomized groups may be explained by impaired NCC downregulation in these kidneys. At a single-nephron level, a high K+ intake raises K+ secretion along the connecting tubule and reabsorption along the collecting duct in sham, and even more in UNX and 5/6-NX. However, the increased K+ secretion per tubule fails to sufficiently compensate for the reduction in nephron number, such that nephrectomized rats have an impaired ability to excrete an acute or chronic K+ load.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app