Add like
Add dislike
Add to saved papers

mCCD cl1 cells show plasticity consistent with the ability to transition between principal and intercalated cells.

The cortical collecting duct of the mammalian kidney plays a critical role in the regulation of body volume, sodium pH, and osmolarity and is composed of two distinct cells types, principal cells and intercalated cells. Each cell type is detectable in the kidney by the localization of specific transport proteins such as aquaporin 2 (Aqp2) and epithelial sodium channel (ENaC) in principal cells and V-ATPase B1 and connexin 30 (Cx30) in intercalated cells. mCCDcl1 cells have been widely used as a mouse principal cell line on the basis of their physiological characteristics. In this study, the mCCDcl1 parental cell line and three sublines cloned from isolated single cells (Ed1, Ed2, and Ed3) were grown on filters to assess their transepithelial resistance, transepithelial voltage, equivalent short circuit current and expression of the cell-specific markers Aqp2, ENaC, V-ATPaseB1, and Cx30. The parental mCCDcl1 cell line presented amiloride-sensitive electrogenic sodium transport indicative of principal cell function; however, immunocytochemistry and RT-PCR showed that some cells expressed the intercalated cell-specific markers V-ATPase B1 and Cx30, including a subset of cells also positive for Aqp2 and ENaC. The three subclonal lines contained cells that were positive for both intercalated and principal cell-specific markers. The vertical transmission of both principal and intercalated cell characteristics via single cell cloning reveals the plasticity of mCCDcl1 cells and a direct lineage relationship between these two physiologically important cell types and is consistent with mCCDcl1 cells being precursor cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app